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How Deep Should Networks Be?
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• In NNs, computational cost scales linearly in depth.
•Want to trade-off model flexibility and cost.

Learnt Depth Networks (LDNs)

We exploit sequential nature of NNs for efficient one-
shot NAS using the architecture in Figure 1:

Residual Blocks fi with Binary Gating:
ai = ai−1 + bifi(ai−1)

Can Limit Model to Depth of d:
bi = 1∀ i ≤ d; bi = 0∀ i > d

Evaluate All Depths in Single Forward Pass:
ŷi = fD+1(ai)

Inference in LDNs

Define Likelihood and Categorical Prior:
pθ(y|x, d); p(d) = Cat(d)

Tractable Categorical Posterior:

p(d=j|D) = p(d=j) · ∏N
n=1 p(y(n)|x(n), d=j)∑D

i=0 p(d=i) · ∏N
n=1 p(y(n)|x(n), d=i)

Repeatedly computing the posterior by iterating over
D is expensive. We learn an approximate distribution
over depth q(d) and model weights θ simultaneously
using Variational Inference:

ELBO(q, θ) = ∑N
n=1 Eq(d)

[
log pθ(y(n)|x(n), d)

]
− KL(q(d) ‖ p(d))

Minibatch estimator of ELBO is evaluated in closed
form with single forward pass. We choose d as:

dopt = min
i
{i : q(d=i) ≥ 0.95 max

j
q(d=j)}

Predictions are made through Marginalisation:

p(y∗|x∗) ≈
dopt∑
i=0

pθ(y∗|x∗, d=i)q(d=i)
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Figure 1: Left: graphical model. Right: computational model. Each block’s activation is passed through the output block.

Learnt Depth Distributions
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Figure 2: Left: Spirals. Right: Image datasets. Histograms show learnt distributions over depth. Vertical black lines indicate chosen
depths. LDNs using up to dopt layers obtain test set log-likelihoods (blue lines) similar to sufficiently deep regular NNs (red lines).

Making an Efficient use of Layers
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Figure 3: Top: spiral functions learnt at different depths of an LDN. Bottom: functions learnt at different depths of a regular network
(DDN). In all cases the max possible depth is 20. LDNs require less layers for same problems, enabling pruning.

Better Calibrated Predictions, For Free

Table 1: Expected Calibration Errors obtained by regular NNs (DDNs), pruned LDNs and unpruned LDNs on image datasets.
DDN LDN, d ∈ [0, dopt] LDN, d ∈ [0, D]

SVHN 9.59± 0.065 9.48± 0.011 9.47± 0.002
Fashion-MNIST 10.17± 0.121 9.73± 0.021 9.71± 0.020
MNIST 9.06± 0.004 9.50± 0.230 9.49± 0.207

Consistent Depth Predictions

Figure 4: Top: The learnt depth and test log-likelihood remain
mostly invariant to the maximum allowed depth on Spirals.
Bottom: Inference time reduction provided by LDNs with
respect to regular NNs of increasing depth on MNIST.

Discussion

We formulate a variational objective over ResNet
depth which can be evaluated exactly. It allows for
one-shot learning of both model weights and a dis-
tribution over depth. We leverage this distribution
to prune our networks, making test-time inference
cheaper, and to obtain model uncertainty estimates.
Our training procedure encourages an efficient use

of model capacity, making models amenable to prun-
ing. Pruned networks perform competitively with reg-
ular ones of any depth on a toy spiral dataset, MNIST,
Fashion-MNIST and SVHN. They often provide bet-
ter calibrated uncertainty estimates.
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