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Talk outline

I Problem setup
I Building some intuition
I 3 classes of gradient estimators and their properties:

I pathwise
I score function
I measure valued

I Variance reduction techniques
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The problem

Consider a probabilistic objective function F :

F(θ) :=

∫
p(x;θ)f (x;φ)dx = Ep(x;θ) [f (x;φ)]

with a cost f and and measure p.
If we want to optimise this with respect to the distributional
parameters θ, we must evaluate the gradient η:

η := ∇θF(θ) = ∇θEp(x;θ) [f (x;φ)] .
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The challenge

Evaluating η is difficult

η := ∇θF(θ) = ∇θEp(x;θ) [f (x;φ)]

I can’t evaluate the expectation F(θ) in closed form
I x is high dimensional – quadrature is ineffective
I θ is high dimensional
I f is non-differentiable/black-box/expensive to evaluate
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Monte Carlo estimators

We can solve the 1st problem by approximating F(θ) as:

F̄N =
1
N

N∑
n=1

f
(

x̂(n)
)
, x̂(n) ∼ p(x;θ).

This is a very general solution! 4 desired properties:
I Consistency

lim
N→∞

F̄N = Ep(x;θ) [f (x;φ)]

I Unbiasedness

Ep(x;θ)
[
F̄N
]

= Ep(x;θ) [f (x)]

I Low variance Vp(x;θ)
[
F̄N
]

I Efficiency
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Stochastic Optimisation
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Variational Inference

Here our objective has the same form as ∇θEp(x;θ) [f (x;φ)]:

Variational Free Energy

η = ∇θEq(z|x;θ)

[
log p(x|z;φ)− log

q(z|x;θ)

p(z)

]

I model/likelihood p(x|z;φ)

I variational family q(z|x;θ)

I prior p(z)
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Model-free Reinforcement Learning

Once again we have an objective of the form ∇θEp(x;θ) [f (x;φ)]:

Policy gradient

η = ∇θEp(τ ;θ)

[
T∑

t=0

γt r(st ,at )

]

I trajectories τ = (s1,a1,s2,a2, . . . ,sT ,aT )

I p(τ ;θ) =
[∏T−1

t=0 p(st+1|st ,at )p(at |st ;θ)
]

p(aT |sT ;θ)
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Other applications

Many other interesting and important problems boil down to
optimisation of an objective like ∇θEp(x;θ) [f (x;φ)]:

I sensitivity analysis (e.g. Black-Scholes option pricing model)
I discrete event systems and queuing theory
I experimental design

Looking specifically at ML applications:
I stochastic differential equations
I learning deep generative models
I bandits
I many more
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Building Intuition I

η = ∇θ
∫
N (x |µ, σ2)f (x ; k)dx ; θ ∈ {µ, σ};

f ∈ {(x − k)2, exp(−kx2), cos(kx)}
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Building Intuition II

∇θEN (x |µ,σ2)

[
(x − k)2] for µ = σ = 1

Score function Score function + variance reduction Pathwise Measure-valued + variance reduction

Value of the cost Derivative of the cost
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Building Intuition III

∇θEN (x |µ,σ2)

[
exp(−kx2)

]
for µ = σ = 1

Score function Score function + variance reduction Pathwise Measure-valued + variance reduction

Value of the cost Derivative of the cost
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Building Intuition IV

∇θEN (x |µ,σ2) [cos kx ] for µ = σ = 1

Score function Score function + variance reduction Pathwise Measure-valued + variance reduction

Value of the cost Derivative of the cost
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Score Function Estimator

Score Function

∇θ log p(x;θ) =
∇θp(x;θ)

p(x;θ)

Several useful properties:
I key quantity in MLE
I zero expectation:

Ep(x;θ) [∇θ log p(x;θ)] =

∫
p(x;θ)

∇θp(x;θ)

p(x;θ)
dx

= ∇θ

∫
p(x;θ)dx = ∇θ1 = 0

I Variance is Fisher information
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Score Function Estimator – Derivation

η = ∇θEp(x;θ) [f (x)] = ∇θ

∫
p(x;θ)f (x)dx =

∫
f (x)∇θp(x;θ)dx

=

∫
p(x;θ)f (x)∇θ log p(x;θ)dx

= Ep(x;θ) [f (x)∇θ log p(x;θ)]

η̄N =
1
N

N∑
n=1

f (x̂(n))∇θ log p(x̂(n);θ); x̂(n) ∼ p(x;θ)

Baseline corrected:

η = Ep(x;θ) [(f (x)− β)∇θ log p(x;θ)]
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Score Function Estimator – Unbiasedness

The score function estimator is unbiased if interchanging the
integral and derivative is valid. Sufficient conditions are:

I p(x;θ) is continuously differentiable in its parameters θ.
I f (x)p(x;θ) is both integrable and differentiable for all

parameters θ.
I There exists an integrable function g(x) such that

supθ ‖f (x)∇θp(x;θ)‖1 ≤ g(x) ∀x.
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Score Function Estimator – Absolute Continuity

∇θEp(x;θ) [f (x)] =

∫
∇θp(x; θ)f (x)dx

= lim
h→0

∫
p(x; θ + h)− p(x; θ)

h
f (x)dx

= lim
h→0

1
h

∫
p(x; θ)

p(x; θ + h)− p(x; θ)

p(x; θ)
f (x)dx

= lim
h→0

1
h

∫
p(x; θ)

(
p(x; θ + h)

p(x; θ)
− 1
)

f (x)dx

= lim
h→0

1
h

(
Ep(x;θ) [ω(θ,h)f (x)]− Ep(x;θ) [f (x)]

)
ω(θ,h) implies an implicit assumption about absolute continuity.
Violated for U [0, θ].
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Score Function Estimator – Variance

Vp(x;θ)[η̄N ] = Ep(x;θ)

[(
f (x)∇θ log p(x; θ)

)2
]
− Ep(x;θ) [η̄N ]2

= lim
h→0

1
hEp(x;θ)

[
(ω(θ,h)− 1)2f (x)2

]
− Ep(x;θ) [η̄N ]2

3 sources of variance:
1. Importance ratio ω:

Ep(x;θ)

[
(ω(θ,h)− 1)2f (x)2

]
2. Dimensionality of x
3. Cost function f (x)

19 of 38



Score Function Estimator – Variance

Vp(x;θ)[η̄N ] = Ep(x;θ)

[(
f (x)∇θ log p(x; θ)

)2
]
− Ep(x;θ) [η̄N ]2

= lim
h→0

1
hEp(x;θ)

[
(ω(θ,h)− 1)2f (x)2

]
− Ep(x;θ) [η̄N ]2

3 sources of variance:
1. Importance ratio ω
2. Dimensionality of x:

D∏
d=1

Ep(xd ;θ)

[
p(xd ;θ+h)

p(xd ;θ)

]
= 1, ∀D

lim
d→∞

ω(θ,h) = lim
d→∞

∏
d

p(xd ; θ + h)

p(xd ; θ)
= 0

3. Cost function f (x)
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Score Function Estimator – Variance

Vp(x;θ)[η̄N ] = Ep(x;θ)

[(
f (x)∇θ log p(x; θ)

)2
]
− Ep(x;θ) [η̄N ]2

= lim
h→0

1
hEp(x;θ)

[
(ω(θ,h)− 1)2f (x)2

]
− Ep(x;θ) [η̄N ]2

3 sources of variance:
1. Importance ratio ω
2. Dimensionality of x
3. Cost function f (x):

e.g. f (x) =
∑

k f (xd ), V[∇θ log p(x;θ)f (x)] will be of O(D2)

19 of 38



Score Function Estimator – Computation

η = ∇θEp(x;θ) [f (x)] = Cov[f (x),∇θ log p(x; θ)],

Cov[f (x),∇θ log p(x; θ)]2 ≤ Vp(x;θ)[f (x)]Vp(x;θ)[∇θ log p(x; θ)].

1. The score function gradient is a measure of covariance
between the cost function and the score function.

2. (Cauchy-Schwartz inequality) the variance of the cost function
is related to the magnitude and range of the gradient.

Overall cost: O(N(D + L)).
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Score Function Estimator – Summary

I (Almost) any cost function can be used.
I The measure must be differentiable wrt. its parameters.
I We must be able to easily sample from the measure.
I It works for both continuous and discrete measures.
I It can be implemented with a single sample!
I Variance reduction is important.
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Pathwise Gradient Estimator

I We can use structure of the measure to develop an estimator:

x̂ ∼ p(x;θ) ≡ x̂ = g(ε̂,θ), ε̂ ∼ p(ε),

I These sampling paths/processes can be derived in a number
of ways:

I Change of variables: p(x;θ) = p(ε) |∇εg(ε;θ)|−1.
I Inversion methods: inverse CDF & uniform distribution.
I Polar transformations: e.g. Box-Muller transform for sampling

Gaussian random variables.
I One-liners: x̂ ∼ N (x|µ,Σ) ≡ x̂ = µ + Lε̂, ε̂ ∼ p(ε), LL> = Σ

I Law of the Unconscious Statistician (LOTUS):

Ep(x;θ) [f (x)] = Ep(ε) [f (g(ε;θ))]
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Pathwise Gradient Estimator – Derivation

η = ∇θEp(x;θ) [f (x)] = ∇θ

∫
p(x;θ)f (x)dx

= ∇θ

∫
p(ε)f (g(ε;θ))dε

= Ep(ε) [∇θf (g(ε;θ))] .

η̄N =
1
N

N∑
n=1

∇θf (g(ε̂(n);θ)); ε̂(n) ∼ p(ε).

23 of 38



Decoupling Sampling and Gradient Computation

η = ∇θEp(x;θ) [f (x)]

= Ep(ε)
[
∇θf (x)|x=g(ε;θ)

]
=

∫
p(ε)∇xf (x)|x=g(ε;θ)∇θg(ε;θ) dε

=

∫
p(x;θ)∇xf (x)∇θx dx

= Ep(x;θ) [∇xf (x)∇θx]

24 of 38



Pathwise Gradient Estimator – Bias & Variance

I Bias: we again interchanged order of integration and
differentiation – cost function must be differentiable (i.e. no
discontinuous cost functions allowed).

I Variance: is bounded by the squared Lipschitz constant of the
cost function.

I Bounds are independent of D.
I As the cost becomes highly variable, the Lipschitz constant

increases.

25 of 38



Pathwise Gradient Estimator – Computation

I For some discontinuous cost functions it is possible to smooth
the function over the discontinuity and maintain the correctness
of the gradient.

I Often multiple equivalent sampling paths. Not much theoretical
motivation for choices – choose the simple one.

I Overall cost: O(N(D + L)).
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Pathwise Gradient Estimator – Summary

I Only works for differentiable cost functions.
I Doesn’t require an explicit measure – just base distribution and

sampling path.
I Can be implemented using only a single sample if needed.
I May require controlling the smoothness of the function during

learning to avoid large variance.
I May require variance reduction.
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Measure-Valued Gradients

Weak derivative of p(x;θ)

∇θi p(x;θ) = c+
θi

p+(x;θ)− c−θi
p−(x;θ),
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Measure-Valued Gradients

Weak derivative of p(x;θ)

∇θi p(x;θ) = cθi

(
p+(x;θ)− p−(x;θ)

)
.

I
(
cθi ,p

+,p−
)

I Univariate definition is extended to the multivariate setting with
a triple of vectors.

I Not unique, but always exists.
I Doesn’t require p to be differentiable in its domain.
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Measure-Valued Gradients

Weak derivative of p(x;θ)

∇θi p(x;θ) = cθi

(
p+(x;θ)− p−(x;θ)

)
.

Distribution p(x ; θ) Constant cθ Positive part p+(x) Negative part p−(x)

Bernoulli(θ) 1 δ1 δ0
Poisson(θ) 1 P(θ) + 1 P(θ)
Normal(θ, σ2) 1/σ

√
2π θ + σW(2,0.5) θ − σW(2,0.5)

Normal(µ, θ2) 1/θ M(µ, θ2) N (µ, θ2)
Exponential(θ) 1/θ E(θ) θ−1Er(2)
Gamma(a, θ) a/θ G(a, θ) G(a + 1, θ)
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Measure-Valued Gradients – Derivation

ηi = ∇θiEp(x;θ) [f (x)] = ∇θi

∫
p(x;θ)f (x)dx =

∫
∇θi p(x;θ)f (x)dx

= cθi

(∫
f (x)p+

i (x;θ)dx−
∫

f (x)p−i (x;θ)dx
)

= cθi

(
Ep+

i (x;θ) [f (x)]− Ep−i (x;θ) [f (x)]
)

η̄i,N =
cθi

N

(
N∑

n=1

f (ẋ(n))−
N∑

n=1

f (ẍ(n))

)
; ẋ(n) ∼ p+

i (x;θ), ẍ(n) ∼ p−i (x;θ)
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Measure-Valued Gradients – Domination

I The score-function estimator used the dominated convergence
theorem to establish correctness of the integral-derivative
swap.

I The measure-valued estimator, allows the swap by definition:

∇θ
∫

f (x)p(x ; θ)dx = cθ

[∫
f (x)p+(x ; θ)dx −

∫
f (x)p−(x ; θ)dx

]
I No problems for U [0, θ].
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Measure-Valued Gradients – Bias & Variance

I Unbiased for bounded and continuous cost functions (by
definition).

I Can also be shown to be unbiased for other types of cost
functions.

I Variance:

Vp(x;θ)[ηN ] = Vp+(x;θ)[f (x)]+Vp−(x;θ)[f (x)]−2Covp+p− [f (x′), f (x)]
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Measure-Valued Gradients – Computation

I Much more computationally expensive than either the
score-function or pathwise estimators.

I Overall cost: O(2NDL) (vs. O(N(D + L))).
I Not applicable to very high-dimensional parameter spaces.
I BUT very low variance in most cases – trade-off.
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Measure-Valued Gradients – Summary

I Can be used with any type of cost function, differentiable or not.
I Works for both discrete and continuous distributions.
I Computationally expensive in high-dimensional parameter

spaces.
I Requires manual derivation of the decomposition.
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Variance Reduction Techniques

I Large-samples
I Coupling
I Conditioning
I Control variates
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Variance Reduction Techniques

I Large-samples
I Easiest variance reduction technique.
I Variance of our estimators shrinks as O(1/N).

I Coupling
I Conditioning
I Control variates
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Variance Reduction Techniques

I Large-samples
I Coupling

η = Ep1(x) [f (x)]− Ep2(x) [f (x)]

Vp12(x1,x2)

[
η̄cpl
]

= Vp1(x1)p2(x2) [η̄ind]− 2Covp12(x1,x2) [f (x1), f (x2)]

I Conditioning
I Control variates
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Variance Reduction Techniques

I Large-samples
I Coupling
I Conditioning

I We Condition our estimators on a subset of dimensions and
integrate out the remaining dimensions analytically.

Vp(x)[f (x)] = Ep(xSc )

[
Vp(xS) [f (x)|xSc ]

]
+ Vp(xSc )[Ep(xS) [f (x)|xSc ]]

≥ Vp(xSc )[Ep(xS) [f (x)|xSc ]]

I Control variates
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Variance Reduction Techniques – Control Variates

I Can be applied to any problem of the form Ep(x;θ) [f (x)].

I Replace f (x) with f̃ (x) whose expectation Ep(x;θ)

[
f̃ (x)

]
is the

same, but whose variance is lower.

f̃ (x) = f (x)− β(h(x)− Ep(x;θ) [h(x)])

η̄N = 1
N
∑N

n=1 f̃ (x̂(n)) = f̄ − β(h̄ − Ep(x;θ) [h(x)]),

I The observed error (h(x)− Ep(x;θ) [h(x)]) serves as a control in
estimating Ep(x;θ) [f (x)]
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Control Variates – Bias, Consistency & Variance

Unbiasedness:

Ep(x;θ)

[
f̃ (x;β)

]
= E

[
f̄ − β(h̄ − E [h(x)])

]
= E

[
f̄
]

= Ep(x;θ) [f (x)]

Consistency: lim
n→∞

1
N

N∑
n=1

f̃ (x̂(n)) = Ep(x;θ)

[
f̃ (x)

]
= Ep(x;θ) [f (x)]

Variance:

V[f̃ (x)]

V[f (x)]
=

V[f (x)− β(h(x)− Ep(x;θ) [h(x)])]

V[f (x)]
= 1− Corr(f (x),h(x))2
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Closing Guidance I

I The pathwise estimator is a good default for continuous
functions and measures that are continuous in the domain.

I If the cost function is non-differentiable or black-box then the
score-function or the measure-valued gradients will work.

I The score-function should always be implemented with some
kind of variance reduction.

I For the score-function estimator, the dynamic range of the cost
function and its variance should be monitored, and ways found
to keep its value bounded within a reasonable range.

I For all estimators, track the variance of the gradients and
address problems by using a larger number of samples, a
lower learning rate, or clipping the gradient values.
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Closing Guidance II

I The measure-valued gradient should be used with a coupling
method for variance reduction

I With several unbiased gradient estimators, a convex
combination might have lower variance.

I For measures discrete on their domain then use the
score-function or measure-valued gradient.

I In all cases, implement a broad set of tests to verify
unbiasedness of the gradient estimator.

Thanks for listening!
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