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What are World Models about?

I Approach in Reinforcement Learning (RL)
I Closely related to Model-Based RL (sample efficiency and planning)
I Partially Observable Markov Decision Processes (POMDP) (hidden information)

I (Some) Key Papers:
I David Ha and Jürgen Schmidhuber. “Recurrent world models facilitate policy

evolution”. In: Advances in Neural Information Processing Systems. 2018,
pp. 2450–2462

I Thomas Kipf, Elise van der Pol, and Max Welling. “Contrastive Learning of
Structured World Models”. In: arXiv:1911.12247 (2020)

I Alexander I. Cowen-Rivers and Jason Naradowsky. “Emergent Communication with
World Models”. In: arXiv:2002.09604 (2020)

I ...
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Outline

1. Introduction to key concepts
I Markov Decision Process (MDP)
I Model-based vs Model-free RL
I Partially Observable MDPs

2. Main Paper: David Ha and Jürgen Schmidhuber. “Recurrent world models
facilitate policy evolution”. In: Advances in Neural Information Processing
Systems. 2018, pp. 2450–2462

3. Related Work:
I Thomas Kipf, Elise van der Pol, and Max Welling. “Contrastive Learning of

Structured World Models”. In: arXiv:1911.12247 (2020)
I Alexander I. Cowen-Rivers and Jason Naradowsky. “Emergent Communication with

World Models”. In: arXiv:2002.09604 (2020)
4. Outlook and open questions
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Reinforcement Learning – Useful Resources

I Book by Richard S. Sutton and
Andrew G. Burto
I Chapter 1
I Chapter 2
I Chapter 3
I Chapter 8

I UCL Lecture on RL by David Silver (+
videos)
I Lecture 1
I Lecture 2
I Lecture 8

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. isbn: 978-0-262-03924-6

David Silver. UCL Course on Reinforcement Learning. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html. 2015
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Characteristics of Reinforcement Learning

What makes RL different from other machine learning paradigms?
I No supervision – there is only a reward signal from an environment

I Feedback is (often) delayed

I Sequential, non i.i.d. data

I Agent’s actions affect subsequent data it receives
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Agent–Environment Interaction

At each step t the agent:
I gets observation Ot

(e.g., current frame of Atari)
I sends action At to the environment

(e.g., push button)
I gets scalar reward Rt+1

(e.g., +1, 0, -1,...)
I gets next observation Ot+1

(e.g., next frame)

The agent–environment interaction leads
to a trajectory (assuming St = Ot):

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .

observation

reward

action

At

Rt

Ot

David Silver. UCL Course on Reinforcement Learning. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html. 2015
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Information State - Markov Property

An Markov state contains all “useful” information from the past.

Definition: A state St is Markov if and only if

P(St+1 | St) = P(St+1 | S1, ..., St) (1)

I the future is independent of the past given the present.
I the state is a sufficient statistic of the past.
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Markov Process

A Markov process is a memoryless random process, i.e., a sequence of random states
S1, S2,... with the Markov property.

Definition: A Markov Process (or Markov Chain) is a tuple 〈S, P 〉
I S is a finite set of states.
I P is a state transition probability matrix, P(St+1 = s′ | St = s)
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Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition:
A Markov Reward Process (MRP) is a tuple 〈S,P,R, γ〉
I S is a finite set of states
I P is a state transition probability matrix, P(St+1 = s′ | St = s)
I R is a reward function, S → R
I γ is a discount factor, γ ∈ [0, 1]
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Reward and Return

RL is based on the Reward Hypothesis
Ô All goals can be described by the maximisation of expected cumulative reward.

Definition: The return Gt is the total discounted reward from time-step t.

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1 (2)

I γ for mathematical convenience, models uncertainty about future
I γ close to 0 leads to “myopic” evaluation
I γ close to 1 leads to “far-sighted” evaluation
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Markov Decision Process

A Markov decision process (MDP) is an MRP with decisions. Its a process in which all
states are Markov.

Definition:
A Markov Process (or Markov Chain) is a tupleM = 〈S,A,P,R, γ〉
I S is a finite set of states
I A is a finite set of actions
I P is a state transition probability matrix, P(St+1 = s′ | St = s,At = a)
I R is a reward function, S ×A→ R
I γ is a discount factor, γ ∈ [0, 1]
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Agent – Policy

Definition: A policy π is a distribution over actions given states,

π(a|s) = P[At = a|St = s] (3)

I MDP policies depend on the current state (not the history)
I policies are stationary (time-independent): At ∼ π(·|St), ∀t > 0
I given an MDPM = 〈S,A,P,R, γ〉 and a policy π:

I the state sequence S1, S2, ... is a Markov process
I the state and reward sequence S1, R2, S2, ... is a Markov reward process
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Value Function

Definition: The state-value function v(s) of an MDP is the expected return
starting from state s

vπ(s) = Eπ[Gt | St = s] (4)

Definition: The action-value function qπ(s, a) of an MDP is the expected return
starting from state s, taking action a, and then following policy π

qπ(s, a) = Eπ[Gt | St = s,At = a] (5)
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Bellman Expectation Equation

The value function vπ(s) can be decomposed into two parts:
I immediate reward Rt+1
I discounted value of successor state γvπ(St+1)

vπ(s) = Eπ[Gt | St = s] (6)
= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · | St = s] (7)
= Eπ[Rt+1 + γGt+1 | St = s] (8)
= Eπ[Rt+1 + γvπ(St+1) | St = s] (9)

The action-value function can similarly be decomposed.
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Optimal Value Function

Definition: The optimal state-value function v∗(s) is the maximum state-value
function over all policies

v∗(s) = max
π

vπ(s) (10)

Definition: The optimal action-value function q∗(s, a) is the maximum action-
value function over all policies

q∗(s, a) = max
π

qπ(s, a) (11)

I The optimal value function specifies the best possible performance in the MDP.
I An MDP is “solved” when we know the optimal value function.
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Finding an Optimal Policy
Define a partial ordering over policies

π ≥ π′ if vπ(s) ≥ vπ′(s),∀s (12)

An optimal policy can be found by maximising over q∗(s, a),

π∗(a|s) =
{

1 if a = argmaxa∈A q∗(s, a)
0 otherwise

(13)

I If we know q∗(s, a), we immediately have the optimal policy
I No closed form solution (in general) for solving the Bellman equations (for q(s, a),

for example)
I Many iterative solution methods exist:

I Value Iteration
I Policy Iteration
I Q-learning
I Sarsa
I ...
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Model-Free RL Algorithm – Example

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. isbn: 978-0-262-03924-6
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Model-Based and Model-Free RL

I Model-Free RL
I No model
I Learn value function (and/or policy) from experience

I Model-Based RL
I Fit a model from experience
I Plan value function (and/or policy) from model
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Model-Free vs Model-Based RL

observation

reward

action

At

Rt

Ot

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. isbn: 978-0-262-03924-6
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Model-Based RL

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. isbn: 978-0-262-03924-6
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What is a Model?

I A modelMη is a representation of an MDP 〈S,A,P,R, γ〉 parametrized by η
I Since S and A are known often written asMη = 〈Pη,Rη〉
I Advantages:

I allows planning 4
I reason about model uncertainty 4
I efficiently learn model by supervised learning methods 4

I Disadvantages:
I First learn a model, then construct a value function Ô two sources of error 8
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Model Learning

I Goal: estimate modelMη from experience {S1, A1, R2, ..., ST }
I This is a supervised learning problem

S1, A1 → R2, S2

S2, A2 → R3, S3

. . .

ST−1, AT−1 → RT , ST

I Learning s, a→ r is a regression problem
I Learning s, a→ s′ is a density estimation problem
I Pick loss function, e.g. mean-squared error, KL divergence, ...
I Find parameters η that minimizes empirical loss
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Application

GivenMη = 〈Pη,Rη〉:
1. Planning: use favorite planning algorithm (value iteration, tree search,...)
2. Sample-Based Planning:

I Use model to generate samples, i.e., sample experience from model
I Apply model-free RL to samples (e.g., Q-learning)

Machine Learning Group Cambridge James Allingham and Gregor Simm 23 / 50



Model-Based and Model-Free RL

I Model-Free RL
I No model
I Learn value function (and/or policy) from experience

I Model-Based RL
I Fit a model from experience
I Plan value function (and/or policy) from model

I Dyna
I Fit a model from real experience
I Learn and plan value function (and/or policy) from real and simulated experience
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Model-Based RL

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. isbn: 978-0-262-03924-6
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Model-Based RL Algorithm – Dyna-Q

Richard S. Sutton, Andrew G. Barto, and Francis Bach. Reinforcement Learning: An Introduction. second edition. Cambridge, Massachusetts:
MIT Press, 2018. isbn: 978-0-262-03924-6
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Fully vs. Partially Observable Environments
Full observability: agent directly observes the environment state.

Ot = Set (14)

I The environment state Set is the environment’s private representation.
I Markov Decision Process (MDP) and this is often assumed.

Partial observability: agent indirectly observes environment.

Ot 6= Set (15)

I Example: a robot with camera vision is not told its absolute position.
I This is a Partially Observable Markov Decision Process (POMDP).
⇒ Agent must construct its own state representation Sat
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Partially Oberservable Markov Decision Process

A Partially Observable Markov decision process (POMDP) is an MDP with hidden
states. It is a hidden Markov model with actions.

Definition: A MOMDP is a tupleM = 〈S,A,O,P,R,Z, γ〉
I S is a finite set of states
I A is a finite set of actions
I O is a finite set of observations
I P is a state transition probability matrix, P(St+1 = s′ | St = s,At = a)
I R is a reward function, R = E[Rt+1 | St = s,At = a]
I Z is an observation function, Z = P[Ot+1 = o | St = s′, At = a]
I γ is a discount factor, γ ∈ [0, 1]
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History and State

I The history is the sequence of observations, actions, and rewards:

Ht = O0, A0, R1, O1, A1, R2, O2, A2, R3, . . . (16)

I Then, the state depends on the history

St = f(Ht) (17)

The function f has to fulfill the Markov property:

f(h) = f(h′)⇒ Pr{Ot+1 = o|Ht = h,At = a} = Pr{Ot+1 = o|Ht = h′, At = a},
(18)
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History and State (II)

I We want our states to be compact as well as Markov (not simply a
concatenation).

I Idea: Recursive update that computes St+1 from St, At and Ot+1:

St+1 = u(St, At, Ot+1) (19)

with the first state S0 given.
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World Models [4]

I Inspired by cognitive neuroscience.

I Train a generative model, the world
model, in an unsupervised manner.

I Train a small controller using
evolutionary strategies [6].

I Controller can be trained on
hallucinated environments.

One way of understanding the predic-
tive model inside our brains is that it
might not simply be about predicting
the future in general, but predicting
future sensory data given our current
motor actions. [4]
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Modeling Space - V(ision) Model

I Train a VAE [7] to reconstruct frames from video game environments.

I Compresses each observation frame into a latent representation z.
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Modeling Time - M(emory) Model

I Train an MDN-RNN [3] to predict future latent states.

I Compresses past latent spaces into a hidden state h i.e. learn P (zt+1|at, zt, ht).

I Can adjust the temperature τ to control model uncertainty.
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Controlling the Agent - C Model

at = Wc[ztht] + bc

I Intentionally kept as simple as
possible.

I Trained to maximise the expected
cumulative reward during a rollout.

www.tasteofhome.com/recipes/
cherry-chocolate-layer-cake/
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Putting Everything Together
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Rolling Out

O0

V

M

Z0

H1

C

A0

H0

O1

V

M

Z1

H2

C

A1

O2

V

M

Z2

C

A2

H3
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CarRacing-v0

1. Collect 10,000 rollouts from a random
policy.

2. Train V to encode frames into z ∈ R32.
3. Train M to model P (zt+1|at, zt, ht).
4. Maximise expected reward by optimizing C

with CMA [6].
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CarRacing-v0

Model Param Count
V 4,348,547
M 422,368
C 867
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CarRacing-v0
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DoomTakeCover-v0

1. Collect 10,000 rollouts from a random
policy.

2. Train V to encode frames into z ∈ R64.
Encode all frames from the rollouts in step
1 into z.

3. Train M to model. P (zt+1, dt+1|at, zt, ht)
4. Optimize C to maximise expected survival

time, in a hallucinated environment.
5. Use policy learned by C in the real

environment.
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DoomTakeCover-v0

Model Param Count
V 4,446,915
M 1,678,785
C 1,088
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DoomTakeCover-v0

I Agent learns to survive for 900 time steps
in the hallucinated environment.

I It also learns various rules of the
environment such as:
I How actions (e.g. left and right)

cause the agent to move.
I That the agent cannot move past walls.
I How to keep track of projectiles.
I That the game should end if a projectile

hits the agent.
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DoomTakeCover-v0

I Agent learns to survive for 1100 time
steps in the real environment.

I The real environment is more difficult than
the hallucinated environment because of
it’s stochasticity.

I The agent can sometimes learn to cheat in
the hallucinated environment.

I The level of difficulty can be controlled
with the temperature parameter of the
MDN-RNN.
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DoomTakeCover-v0
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CartPole

1. Initialize M and C randomly.
2. Collect N rollouts in the real

environment.
3. Train M to model
P (xt+1, dt+1, rt+1, at+1|at, xt, ht).

4. Optimize C to maximise expected reward
in the hallucinated environment.

5. Go back to step 2 if task has not been
solved.
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Contrastive Learning of Structured World Models [4]

I The world model of Ha and Schmidhuber relies on the VAE framework to learn
representations of the environment.

I However, this representation is not structured: it is not explicitly built up from
representations of objects, relationships, and hierarchies.

I Additionally, training a generative model on pixels requires a trade-off between
reconstruction loss and constraints on the latent variables.

I Contrastively-trained Structured World Models (C-SWMs) attempt to address
these issues.
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Contrastive Learning of Structured World Models [4]

Suppose our goal is simply to learn a representation of the world:
I Given an experience buffer {(st, at, st+1)}Tt=1,
I Learn latent representations zt that discards any information that is not required

to predict zt+1 given at.
I i.e. learn an encoder E : S → Z and a transition model T : Z ×A → Z.
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Contrastive Learning of Structured World Models [4]

We can use an energy-based hinge loss function:

L = d(zt + T (zt, at), zt+1) + max(0, γ − d(z̃t, zt+1))

where d(x, y) is the squared euclidean distance, zt = E(st), z̃t = E(s̃t) for s̃t sampled
at random from the experience buffer, and γ is the margin hyper-parameter.
The hinge is placed only on the corrupted term as this was found to work better in
practice.
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Contrastive Learning of Structured World Models [4]

However, we want to learn a structured model for the world where:
I Z = Z1 ×Z2 × · · · × ZK , and
I A = A1 ×A2 × · · · × AK .

where zi is the representation for object i in the environment, and ai is an action
applied to it.
I ensures that objects are represented independently,
I allows for parameter sharing, and
I serves as a strong inductive bias!
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Contrastive Learning of Structured World Models [4]
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Contrastive Learning of Structured World Models [4]

I Encoder split into two parts a CNN Eext and an MLP Eenc:
I mk

t = [Eext(st)]k
I zk

t = Eenc(mk
t ).

I Only one feature map per object in this work.
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Contrastive Learning of Structured World Models [4]

I ∆z = T (zt, at) = GNN({(zkt , akt )}Kk=1).
I GNN consists of node and edge update functions implemented as MLPs:

I e
(i,j)
t = fedge([zi

t, z
j
t ])

I ∆zj
t = fnode([zj

t , a
j
t ,

∑
i 6=j e

(i,j)
t ])

I This work only applies 1 round of message passing.
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Contrastive Learning of Structured World Models [4]

L = H + max(0, γ − H̃)

where:

H = 1
K

K∑
k=1

d(zkt + T k(zt, at), zkt+1) H̃ = 1
K

K∑
k=1

d(z̃kt , zkt+1))
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Contrastive Learning of Structured World Models [4]

I Quantitative results for these environments and some Atari games:
I Stronger performance than VAE-based world models.
I Ablation study for factored states, GNN, and contrastive loss.

I Limitations:
I Instance disambiguation.
I Stochasticity.
I Markov assumption.
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Emergent Communication with World Models [1]
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EC Setting

I Speaker:
I Full observation Ot

I Sends messages mt based on Ot to listener

I Listener:
I Has partial observation ot

I Receives messages mt from speaker
I Acts in environment through actions at

I Both try to achieve the same goal
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Challenges and Desiderata

I mt should not be a command

I separate mt from listeners decision making

I message should be grounded: should relate to what the speaker is seeing

I listener should update belief of state st based on mt

I listener should “visualize” the world (dreaming)

Language World Models (LWM): WM for partially observable worlds which are
trained to predict future states based on messages.
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Speaker – Concept Clustering
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Listener
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Interpret Message by Inspecting Listener’s Belief

Machine Learning Group Cambridge James Allingham and Gregor Simm 47 / 50



Conclusions
I Key Paper: World Models
I Extensions:

I Structured World Models: WM which learn structured representations of the
environment.

I Language World Models: WM which predict the future based on messages from a
speaker.

I More reading:
I Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,

Honglak Lee, and James Davidson. “Learning latent dynamics for planning from
pixels”. In: arXiv preprint arXiv:1811.04551 (2018) – shows that learning in
hallucinated environments can be very sample efficient.

I Daniel Freeman, David Ha, and Luke Metz. “Learning to Predict Without Looking
Ahead: World Models Without Forward Prediction”. In: Advances in Neural
Information Processing Systems. 2019, pp. 5380–5391 – another application of
World Models to partially observed environments. Very cool web version of the
paper: https://learningtopredict.github.io/.

I Marwin H. S. Segler. “World Programs for Model-Based Learning and Planning in
Compositional State and Action Spaces”. In: arXiv:1912.13007 (2019) – World
Programs: agent has to learn the allowed actions as well.
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Questions?

Thank you for your attention!
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